

Alliance Payment Technologies, Inc.
XML Requester Service

Sample VBScript

Version: 1.0
Monday, October 06, 2003

For support, please contact:
support@allianceach.com

(909) 974-0100

mailto:support@allianceach.com"

 2

Table of Contents

Creating a Request...3
Adding a <Request> Element ..4
Invoking the Request..5
Extracting Results ..6
The Results ...8

 3

Accessing Alliances XML Requester services from VBScript on the Windows platform is best done
using the objects provided by MSXML. Whether from within a browser window, an ASP page, or a
stand-alone VBScript program running within Windows Scripting Host, MSXML takes care of all the
hard work, freeing the developer to concentrate on the business problem that needs to be solved.

Supporting Code

The supporting code for this document can be downloaded at:
 http://www.allianceach.com/downloads/

Creating a Request

A service request is built using an instance of XMLDOMDocument. The newly created DOMDocument
is then populated with the elements that make up an Alliance XML Requester service request.

'
'Create an empty XMLDOMDocument
'
dim doc
set doc = CreateObject(strMSXMLProgID)

'
'Create a new <AACHRequest> element and add it to the DOM (it's the document
element).
'
dim root
set root = doc.appendChild(doc.createElement("AACHRequest"))

Once we've created an empty AACHRequest element, we need to add authentication information to
it.

'
'Create an <Authentication> element and append it to the document element
'
dim auth
set auth = root.appendChild(doc.createElement("Authentication"))

'
'Create <Username> and <Password> elements and append them to the <Authentication>
'
auth.appendChild(doc.createElement("Username")).text = strUser
auth.appendChild(doc.createElement("Password")).text = strPassword

http://www.allianceach.com/downloads/

 4

Adding a <Request> Element

Now that we've got an empty AACHRequest document, with the needed authentication elements,
we're ready to start adding requests. Note that any number of requests can be included in a single
AACHRequest document. The server will process all of the requests, in the order they appear in the
document, before returning any results to the caller.

'
'Create a <Request> element and append it to the document element
'
dim aachrequest
set aachrequest = doc.documentElement.appendChild(doc.createElement("Request"))
aachrequest.setAttribute "ID",strID

'
'Create <RequestType> element and append it to the <Request> element
'
aachrequest.appendChild(doc.createElement("RequestType")).text = strType

Here we've created a <Request> element, set it's ID attribute to "0", and created the
<RequestType> element as a child of the <Request> element. Note that doc is always used to
create new elements regardless of where they're to be inserted into the tree. Also note that the
newly inserted node is returned by appendChild, so we can directly access it's text property, to set
the text content of the element.

Now, if the request we wanted to invoke required additional parameters, we'd need to add them to
the request document at this time. Use a structure similar to what we just used to append the
<RequestType> element.

Since we're invoking the ABASearch request, there is at least one more element we need to add, the
ABA Number we are searching for:

aachrequest.appendChild(doc.createElement("ABANumber")).text = �322282603�

There are no further elements to add, so we're ready to invoke the request and see what we get
back.

 5

Invoking the Request

We'll use another object provided by MSXML to send the request to the server and get the response
back: XMLHTTP. Once we have a response, we'll load it into another instance of XMLDOMDocument
so that we can easily extract whatever elements we desire from the response.

Note: This example uses the XMLHTTP object. For production use in a server-based application, you
should use the ServerXMLHTTP object, which exposes the same functions, but is designed and tuned
for use in a server environment.

'
'Create an XMLHTTP instance
'
dim req
set req = CreateObject(strXMLHTTPProgID)

'
'Send the request & get the response
'
req.open "POST",strAACHRequesterUrl, false
req.send doc

The call to XMLHTTP.send sends the <AACHRequest> document to the server, using the HTTP POST
method. The server's response is received and stored within the httpreq object until we're ready for
it.

For the moment, we'll skip error checking, and jump straight into getting the response document.

'
'Load the response into an XMLDOMDocument and check for parse errors
'
if not objLastResponse.load(req.responseStream) then

 ' ... handle the error as appropriate

 exit sub
end if

That's it!

 6

Extracting Results

Assuming no errors occurred the response object now contains the parsed response from the server.
In order to examine the response, MSXML provides the powerful XPath query language. Using XPath
it's easy to extract any particular node (or nodes) from the response document.

'
'Check for successful request invocation (this only tests that the entire
'request was received and processed - individual <Request> elements may have
'had errors)
'
dim wrapperStatus
wrapperStatus = GetResponseValue("/AACHRequest/ResponseSummary/Error")
if wrapperStatus = "True" then

 ' ... handle the error as appropriate

 exit sub
end if

If our request was processed successfully, the response document will contain one or more
<Request> elements, corresponding to the <Request> elements which we included in the request
document. Each of these elements serves as a container for all of the results produced by a single
request invocation. Before we go looking for results, however, we should check the status of the
actual request, to make sure that the request itself was processed successfully.

'
'Check for successful Request
'
dim statusCode
statusCode = session.GetResponseValue("/AACHRequest/Request/Status")
if statusCode <> "Success" then

 ' ... handle the error as appropriate

end if

Note that if we'd included more than a single <Request> element in the request document, we'd
have to iterate through each of the <Request> elements in the response document, checking the
<Status> of each one before extracting response data. Multiple nodes can be selected using the
selectNodes method instead of selectSingleNode. As it happens, the request we invoked
(ABASearch) returns multiple results, so we'll have to learn how to iterate through a set of nodes
before getting much farther!

'
'Get the resultsItems & print them out
'
dim results
set results = session.GetResponseElementList("/AACHRequest/Request/Results/Result")
if results.length <> 0 then
 dim i
 for i = 0 to results.length-1
 stdout.WriteLine "Result " & i
 dim result
 set result = results.item(i)
 dim node
 set node = result.selectSingleNode("ABANumber")
 if not (node is Nothing) then
 stdout.WriteLine " ABA Number: " & node.text

 7

 end if
 set node = result.selectSingleNode("Name")
 if not (node is Nothing) then
 stdout.WriteLine " Bank Name: " & node.text
 end if
 set node = result.selectSingleNode("Phone")
 if not (node is Nothing) then
 stdout.WriteLine " Phone Number: " + node.text
 end if stdout.WriteLine ""
 next
else
 stdout.WriteLine "No accounts were found"
end if

 8

The Results

This program was designed to be invoked using the console version of Windows Scripting Host,
cscript.exe. Here's the results of a typical invocation of this program:

>cscript CallAACH.vbs username password
Microsoft (R) Windows Script Host Version 5.6
Copyright (C) Microsoft Corporation 1996-2001. All rights reserved.

Result 0
 ABA Number: 322282603
 Bank Name: ARROWHEAD CREDIT UNION
 Phone Number:

Result 1
 ABA Number: 322282603
 Bank Name: ARROWHEAD CREDIT UNION
 Phone Number: 9098813355

	Supporting Code
	Creating a Request
	Adding a <Request> Element
	Invoking the Request
	Extracting Results
	The Results

